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Abstract

The human external ears, or pinnae, have an intriguing shape and, like most parts of the human external body,

bilateral symmetry is observed between left and right. It is a well-known part of our auditory sensory system

and mediates the spatial localization of incoming sounds in 3D from monaural cues due to its shape-specific

filtering as well as binaural cues due to the paired bilateral locations of the left and right ears. Another less

broadly appreciated aspect of the human pinna shape is its uniqueness from one individual to another, which

is on the level of what is seen in fingerprints and facial features. This makes pinnae very useful in human

identification, which is of great interest in biometrics and forensics. Anatomically, the type of symmetry

observed is known as matching symmetry, with structures present as separate mirror copies on both sides of

the body, and in this work we report the first such investigation of the human pinna in 3D. Within the

framework of geometric morphometrics, we started by partitioning ear shape, represented in a spatially dense

way, into patterns of symmetry and asymmetry, following a two-factor ANOVA design. Matching symmetry was

measured in all substructures of the pinna anatomy. However, substructures that ‘stick out’ such as the helix,

tragus, and lobule also contained a fair degree of asymmetry. In contrast, substructures such as the conchae,

antitragus, and antihelix expressed relatively stronger degrees of symmetric variation in relation to their levels

of asymmetry. Insights gained from this study were injected into an accompanying identification setup

exploiting matching symmetry where improved performance is demonstrated. Finally, possible implications of

the results in the context of ear recognition as well as sound localization are discussed.
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Introduction

The human external ear, or pinna, is a well-known part of

our auditory sensory system and exhibits bilateral symmetry

like most parts of the external human body. The pinna’s

anatomy is relatively complex in comparison with the rest

of the external human body, with highly curved and inter-

twined substructures (Fig. 1). Its shape, however, is far from

arbitrary and has evolved to allow for spatial localization of

sounds (Blauert, 1997). Complemented with the inter-aural

time difference between both ears, which carries informa-

tion on the horizontal position of the sound source, the

acoustic (spectral) content of the binaural sound is filtered

by the morphology of the head and ears in ways that allow

the listener to further pinpoint the location of the sound

source. Depending on the direction from where the sound

originates, the body/head/ears filter away some frequencies,

while reinforcing others, resulting in the so-called head-

related transfer function (HRTF; Wightman & Kistler,

1989a): with a particular direction corresponding to a

proper spectral filtering. Hence, analyzing the spectrum of

the incoming sound, the observer can extract information

on the direction from which the sounds originate. The
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external ear has evolved to operate best when subjected to

sounds that humans are confronted with in their natural

environment (broadband) and to be most sensitive and

informative about directions that are most relevant to

humans (Reijniers et al. 2014). Because of the limited physi-

cal dimensions of the outer ears, spatial cues introduced to

the outer ears are mainly restricted to the high frequency

part of the spectrum (above 4 kHz).

Another, less known, aspect of the human pinna shape is

its uniqueness from one individual to another. This has

been shown most exhaustively in work by Alfred Iannarelli,

who compared more than 10 000 ears. In a subsequent

study he also examined ears from fraternal as well as identi-

cal twins. In all his results, no two ears were indistinguish-

able; leading him to state that ear shape can be used as a

unique feature for identification purposes (Iannarelli, 1989).

This is of great interest to forensics and security where both

verification (is this the same person?) and identification

(who is this person?) of people is often required. Therefore,

much like fingerprint and face recognition (Smeets et al.

2010, 2012), ear recognition (Chen & Bhanu, 2007; Yan &

Bowyer, 2007; Abaza et al. 2013) is an active field of

research in biometrics (biometric authentication). From this

perspective, bilateral symmetry of the human pinnae is also

interesting, most obviously because the left ear of an indi-

vidual can be used as a probe (test subject with unknown

identity) in a comparison with a gallery of right ears (data-

base of candidates with known identity) (Abaza & Ross,

2010). This way, smaller galleries can be used, containing

one instead of two ear images per subject, with the associ-

ated reduction in maintenance costs. Furthermore, it better

allows the application of ear recognition under uncon-

strained conditions (e.g. train station or airport), in which

one has no control over whether the left or right ear can be

captured and compared.

From an anatomical view, the type of bilateral symmetry

observed is known as matching symmetry between paired

structures that are present as separate mirror copies on

both sides of the body (Klingenberg & McIntyre, 1998; Mar-

dia et al. 2000; Klingenberg et al. 2002). During develop-

ment, imbalances in growth will inevitably result in

deviations from perfect symmetry (Hamada et al. 2002).

These departures from symmetry, known as asymmetry,

generate differences in ear shape between left and right,

which are also referred to as intra-subject (in contrast to

inter-subject) differences in this work. Although departures

from symmetry are a property of the individual, patterns of

asymmetry are studied at the level of the (sub)sample and

are grouped into three categories, directional asymmetry,

fluctuating asymmetry, and antisymmetry (Palmer & Stro-

beck, 1986; Palmer, 1994).

Whether the presence of asymmetry influences our capa-

bility in sound localization is unknown, but it is not unlikely

to influence ear recognition based on matching symmetry.

Investigations like these require the quantification of pat-

terns of 3D ear shape variation in function of symmetry and

asymmetry. This work, to the best of our knowledge, pre-

sents the first such systematic structural investigation in 3D.

Building on previous work that focused on the decomposi-

tion of 3D facial shape into object (instead of matching)

symmetry and asymmetry (Claes et al. 2012b), we use 3D

spatially dense geometric morphometrics to decompose

and investigate matching symmetry and asymmetry in the

human pinnae. In doing so, valuable anatomical insights

with possible implications mainly for ear recognition, but

also sound localization, are gained and discussed. Addition-

ally, some of these insights are demonstrated and again dis-

cussed in both a biometric verification and identification

test setup.

Materials and methods

Sampling, mapping, and Procrustes superimposition

In all, 411 computer tomography (CT) angiograms from 411 differ-

ent subjects (thus one image per subject) of the neck and brain

were queried from a database of clinical 3D CT images. A subsample

of 340 CT images, properly displaying a full head containing both

ears without visible distortions (due to scanning positioning or aids

such as pillows), was further selected. The subsample contains simi-

lar numbers of males (178) and females (162), with an average age

of 52 � 20 years (standard deviation), with a minimum age of

15 years and a maximum age of 89 years. A small set of 76 images

were acquired using a Siemens Sensation 16, while the rest of the

images were acquired using a Siemens Sensation 64. CT images

were processed in MEVISLAB (MevisLab), where they were resampled

to isotropic 1 9 1 9 1 mm voxels. Subsequently, complete head

surfaces were extracted using simple thresholding (�424 HU) of

voxel intensities in combination with marching cubes (Lorensen &

Fig. 1 The anatomy of the human pinna, which develops from six

auricular hillocks (Abaza & Ross, 2010; Abaza et al. 2013). The first

arch develops into the tragus, cymba conchae, and helix (red arrows),

and the second arch develops into the antitragus, antihelix, and

conchae (green arrows).
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Cline, 1987). Both left and right ears were extracted separately from

each head using a bounding box-based manual selection proce-

dure. Segmented ear surfaces were further cleaned by manually

removing middle and inner ear structures. Right ear surfaces were

reflected by changing the sign of the x-coordinate (Klingenberg &

McIntyre, 1998; Mardia et al. 2000). In the remainder of the manu-

script, when talking about the right ear, we refer to this reflected

version unless otherwise stated.

A single left ear was randomly selected as the initial anthropo-

metric mask (AM) for the ear shape, similar to what was done with

facial shape in previous work (Claes et al. 2011, 2012a). In that

work, facial surface scans before and after surgical treatment (Claes

et al. 2012a) or expressing abnormal asymmetry (Claes et al. 2011)

were analyzed using an AM that essentially generates the ability to

compare different 3D images anatomically. The AM for ear shape

used in this work was densely resampled with 4537 quasi-landmarks

distributed uniformly and equidistantly across the shape region of

interest using the remeshing function of the FastRBF toolbox in MAT-

LAB
TM (FastRBF). The AM surface comprised 7310 triangles with simi-

lar edge lengths (average edge length 1.21 mm � 0.23 standard

deviation) connecting neighboring quasi-landmarks. The AM served

as a surface template and was non-rigidly mapped onto all 680 (left

and right combined) ear surfaces. Basically, the AM represents the

definition of the points or landmarks used in the investigation and

the non-rigid mapping using 3D surface registration techniques

comprises the indication of these points on all shapes (Appendix 1:

Shape analysis using 3D surface registration). The result is that each

shape in the database is now represented with the same number of

quasi-landmarks and pattern of triangle connectivity. After a single

mapping run over the complete database, the average quasi-land-

mark configuration was computed and used as an update to the

AM. The whole process was repeated three times to reduce bias

from the originally selected ear serving as AM. The AM used in the

last run is seen in Fig. 1.

Subsequently, following Mardia et al. (2000), we performed a

generalized Procrustes superimposition (Rohlf & Slice, 1990), elimi-

nating differences in position, orientation, and scale of all left and

right ears pooled. In the superimposed space, the Euclidean dis-

tance between two landmark configurations of Procrustes coordi-

nates is known as the Procrustes distance and serves as a measure

of shape difference or dissimilarity (Bookstein, 1991). Given paired

left and right ears of the same subject after superimposition, an

individual’s ear shape can be separated into its symmetric and asym-

metric part (Mardia et al. 2000). Indeed, partitioning of variation

into symmetric variation and asymmetric variation among individu-

als uses averages and differences of those paired configurations

(Klingenberg et al. 2002; Kimmerle & Jantz, 2005). Asymmetric vari-

ations imply differences between left and right ears within the

same subject. Thus these are intra-subject variations and are created

by taking the difference of paired left and right ears. The symmetric

variations, on the other hand, are differences across different indi-

viduals after first averaging left and right ears within each subject.

Thus these are inter-subject shape variations and are created by first

taking the average of paired left and right ears.

Partitioning of pinna shape variation

Partitioning of pinna shape variation into symmetry and asymmetry

was done following previous work to which the reader is referred

for a detailed explanation (Claes et al. 2012b). In summary, the

commonly used two-factor ANOVA design with individuals (rows) and

left/right or side (columns) as the main effects was employed

(Klingenberg et al. 2002). Variation in symmetry, corrected for the

effects of asymmetry, is obtained from the main effect of individu-

als. Directional asymmetry (DA) corresponds to the main effect of

side and fluctuating asymmetry (FA) is ascertained by the interac-

tion term (individual 9 side). Measurement error is normally taken

into account using a two-factor ANOVA with repeated measures of

both factors in cells. The lack of repeated measures, and thus hav-

ing a single measurement per cell, was dealt with in two different

ways: noise injection (or simulating technical replication) and addi-

tive main & multiplicative interaction (AMMI) modeling.

The noise injection (technical noise level = 0.0104 after size nor-

malization, obtained by multiple non-rigid mappings on a subset

of ears, data not shown) generated three randomly perturbed rep-

licate measurements needed for the traditional two-factor ANOVA

partitioning. This was done under an isotropic model assumption

with an appropriate number of degrees of freedom as defined for

matching symmetry (Klingenberg & McIntyre, 1998). In this way we

computed an overall and localized (per quasi-landmark) F statistic

for the effect of symmetry, which is essentially coding for inter-sub-

ject variations, as well as the effect of directional and fluctuating

asymmetry, which is essentially coding for intra-subject variations.

It should be noted that the isotropic model assumption is restric-

tive, such that the interpretation of localized results should be

done with caution, as mostly advised in the case of Procrustes-

based analyses.

The AMMI framework provides an alternative when dealing with

a single measurement per cell as well as a practical foundation

when dealing with spatially dense data, and was used for partition-

ing and visualizing multivariate patterns of both symmetry and

asymmetry as follows:

1 Taking the mean for each row creates an average ear shape

from both sides for each individual. Subsequently, these

coded for patterns of symmetry, which were then further

modeled using principal component analysis (PCA).

2 The difference in column equals the average of all left ears

subtracted from the average of all right ears and then

coded for directional asymmetry.

3 Pairwise differences taken between sides for each row cre-

ate the asymmetry component for each individual. Subse-

quently, these coded for patterns of asymmetry, which

again were modeled with PCA after first centering (on the

average) of the differences. The last is the same as subtract-

ing DA from each individual asymmetry component.

For visualization purposes, the overall consensus ear configura-

tion was re-added to the pairwise column differences after center-

ing. The whole approach is related to the partitioning of shape

variations in the works of Mardia et al. (2000) and Klingenberg

et al. (2002) as outlined in Claes et al. (2012b).

Shape subspace comparison

Different groups (for example left and right ears seen as separate

groups) may or may not occupy distinct loci and therefore span a

different subspace in shape space. The idea is that, if two groups

span the same subspace and share the same center or location, both

groups will show great similarity in shape variations and it will be

hard to separate members in one group from the other. In Appen-

dix 2, we tested the differences in group location (differences in

mean shape), variance–covariance scale [differences in dispersion

(magnitude without direction) around the mean shape], and orien-

tation (differences in variance directions around the mean shape).

© 2014 Anatomical Society
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First, the subspaces of left and right ears as distinct groups were

compared to see whether shape patterns of left ears are different

from those of right ears. Secondly, we compared the subspaces of

intra- vs. inter-subject variations to see whether differences

between left and right ears within individuals differ from the

differences across the average ears of individuals. Both inter- and

intra-subspaces were obtained using the AMMI modeling explained

earlier.

Finally, all tests were performed in MATLAB
TM (2012a) with 10 000

permutations. The permutations adapted to deal with paired data

setups where appropriate.

Biometric verification and identification

The key element for the establishment of identity is a measure of

similarity between biometric samples (Jain & Li, 2005; Jain et al.

2007). Given a biometric sample with unknown identity (probe), a

measure of similarity is computed between this probe and possible

candidate samples with known identities. In verification mode, a

one-to-one comparison with a single candidate is performed and

the identity is verified if the measure of similarity is deemed high

enough. The performance of the verification mode used is evalu-

ated using an ROC (receiver operating characteristic) curve analysis

(Jain & Li, 2005; Jain et al. 2007). For a range of thresholds on the

measure of similarity, the false accept fraction is plotted against the

false reject fraction. A characteristic and often reported point on

the curve is the equal error rate (EER), where the fractions of false

accept and reject are equal. A lower EER indicates a better perfor-

mance (Jain et al. 2007). In (closed set) identification mode, a one-

to-many comparison with multiple candidates in a gallery is per-

formed and identity is established by looking at the most similar

candidates after sorting the gallery from highest to lowest likeness.

The performance in identification mode is evaluated using cumula-

tive match characteristic (CMC) curves (Jain & Li, 2005; Jain et al.

2007). These curves plot the cumulative identification rate in func-

tion of rank, which is simply the index of the true candidate in the

sorted gallery list. To reduce the effect of gallery size (number of

subjects), identification performance is plotted as a percentage of

rank (Jain & Li, 2005). Identification performance is most often sum-

marized with rank 1 identification rate (Jain & Li, 2005), reflecting

the percentage of perfect recognition results. The higher the rank 1

identification rate, the better the performance.

In this work, 3D ear shapes were used as biometric samples and

the Procrustes distance was used as measure of similarity between

them. The 340 left ears, one-by-one, served as probes and the 340

right ears as the gallery. In doing so, 340 trials tested the presence

of matching symmetry in the human pinnae for its ability to enable

biometric authentication. Firstly, the complete shape of ears was

used to compute Procrustes distances. Subsequently, using a range

of thresholds on the localized F-ratio obtained from the effect of

individuals corrected for asymmetry (using the noise-injected two-

way ANOVA partitioning of shape) subsets of quasi-landmarks in ear

shape were selected and used to compute Procrustes distances. The

range of thresholds on the F-ratio went from the lowest to the

highest observed F-ratio value in 10 equidistant steps. The idea was

to focus on substructures in ear shape with increasing minimum

ratios of inter- vs. intra-subject variation. In other words, pinna sub-

structures with greater amounts of matching symmetry relative to

their asymmetric variation were selected. Performance was evalu-

ated in verification and identification mode using EER scores and

rank 1 identification rates, respectively.

Results

Pinna shape decomposition

The two-factor ANOVA partitioning of external ear shape

based on injected noise is given in Fig. 2. The mean squares

(MS in first column) reflect effect magnitude and the

F-ratios (second column) reflect relative magnitude or effect

strength. Overall, the main effects of individuals, sides, and

the interaction were significant (P < 0.001). Focusing on the

first column, the inter-subject/symmetry variations (first

row) were located mainly in the lobule, tragus, and tubercle

or posterior part of the helix. To a lesser degree, variations

among individuals were seen in the conchae, antitragus,

antihelix, and remaining parts of the helix. Interestingly,

variations in fluctuating asymmetry (third row) were also

located in the lobule, tragus, and posterior part of the helix.

These substructures typically ‘stick out’/protrude and might

therefore be more susceptible to developmental instabili-

ties. Another result of interest is the observation of symme-

try variation in the context of fluctuating asymmetry, which

is depicted in the first row, 2nd column, or the F-ratio for

matching symmetry. Here we see that the conchae, antitra-

gus, and antihelix show greater symmetric than asymmetric

variation. In other words, the differences across individuals

are larger than the differences between the left and right

sides for these substructures. Therefore, these regions might

be favorable for identification as well as genetic variability.

The effects of individuals as well as the effects of FA were

significant across all the quasi-landmarks (third column).

Some directional asymmetry (second row) was observed in

the anterior part and the crus of the helix with additional

small patches on the antitragus and lower posterior part of

the helix. As expected, the error term was visually evident

as a fuzzy diffuse pattern consistent with the noise injection

process.

From the AMMI framework, the first three PCs modeling

patterns of symmetry (inter-subject) and FA (intra-subject)

separately are given in Fig. 3. We observe from these

images that the three PCs coding for inter-subject variations

have a greater effect in magnitude compared with the PCs

coding for intra-subject variations. In correspondence with

the observations made in Fig. 2, substructures such as the

lobule, tragus, and posterior part of the helix are affected

in both inter- and intra-subject PCs. Also corresponding to

Fig. 2, the conchae, antihelix, and antitragus are affected

more in the inter-subject patterns. The correspondences

between Figs 2 and 3 were as expected, as both techniques

focus on similar shape decompositions. However, the results

in Fig. 2 are only based on the distances of changes in 3D

of the quasi-landmarks treated as univariate variables. In

contrast, the results in Fig. 3 capture multivariate patterns

of covariance in the 3D displacements separately from the

quasi-landmarks. It should be noted that although PCA is a
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practical tool in modeling patterns of covariance and allows

some comparisons to be made, as in this work, it is best to

avoid assigning any further biological meaning or insight to

them individually.

The results on comparing shape subspaces are given in

Appendix 2. Left and right subspaces covered the same loci

in shape-space. In other words, similar shape patterns occur

in left and right ears. In contrast, the differences between

paired left and right ears expressed lower dispersion and

are dissimilar in covariance structure compared with differ-

ences across individuals. In other words, it should be possi-

ble to identify individuals based on matching symmetry,

even in the presence of asymmetry, because the differences

across individuals are larger and often different than the

differences between left and right.

Biometric evaluation based on matching symmetry

In the previous results we clearly observed both symmetry

as well as asymmetry in the human pinna. In the remainder

of the results, the idea is to test to what extent this

approach can be exploited in biometric verification and

identification setups. The minimum and maximum localized

F-ratio (per quasi-landmark) in Fig. 2, column two, row one,

was 2.4 and 7.7, respectively, from which the following ser-

ies of F cutoffs was extracted: 2.4, 2.9, 3.4, 4, 4.5, 5, 5.6, 6.1,

6.6, and 7.2. For each of these cutoffs, quasi-landmarks with

equal or greater localized F-ratio were selected. As such, a

cutoff of 2.4 yields 100% of quasi-landmarks and increasing

the cutoff implied a selective reduction as depicted in

Fig. 4. Using all quasi-landmarks, the EER was equal to

14%, with a rank 1 identification rate of 79%. Increasing

the cutoff improved both the verification and identification

performance. A ‘best’ cutoff was reached at 4.5 with an EER

and rank 1 identification rate of 11 and 81%, respectively.

A further increase in cutoff resulted in a steep drop in per-

formance. These results indicate that it is sensible to focus

on substructures expressing a higher F-ratio in inter- vs.

intra-subject variation in a biometric setup based on match-

ing symmetry. According to the ‘best’ cutoff, the focus is

mainly on the conchae, antitragus, and antihelix, with addi-

tional patches from the tragus, lobule, triangular fossa, and

anterior part of the helix. A further increase in cutoff leads

to loss of ‘enough’ shape information, leaving no more use-

ful information to individualize.

Discussion

The human external ear, or pinna, shows both a highly vari-

able convoluted shape and bilateral symmetry. It is some-

what counterintuitive to have a shape with very specific

functions, namely capturing, amplifying, and filtering

incoming sound, that also shows so much inter-individual

variation as to be unique for every individual. Some aspects

of shape variation in the human ear have been known for

over a century and have been used (correctly or not) by 19th

Fig. 2 Two-factor ANOVA partitioning of ear

shape variation following an isotropic model

with injected noise. P-values using 10 000

permutations with ** and yellow P < 0.001;

* and light green P < 0.05; dark green not

significant (P ≥ 0.05). MS, mean square, is

the sum of squares divided by the appropriate

degrees of freedom, reflecting the magnitude

of the effect. F, F-ratio, is the MS divided by

an appropriate error MS, reflecting the

relative magnitude or strength of the effect

(effect-size).

© 2014 Anatomical Society

Matching symmetry in the human pinnae, P. Claes et al.64



century physiognomists (Beard, 1978). Our presentation

here is the first systematic 3D investigation of matching

symmetry in the human pinnae from an anatomical per-

spective. We have extended our previous work using spa-

tially dense geometric morphometrics to quantify human

facial variation (Claes et al. 2011, 2012b). We used the

familiar two-way ANOVA to decompose outer ear shape into

symmetry and asymmetry. We found substantial levels of

matching symmetry in all substructures of the pinna anat-

omy. The inter-subject or symmetry variations were mainly

located in the lobule, tragus, and tubercle or posterior

part of the helix. To a lower degree, variations among

Fig. 3 The effects (colored ears), a positive morph (first ear shape) and a negative morph (second ear shape) along the first three principal compo-

nents (rows 1–3) in multivariate patterns of inter-subject (left) and intra-subject variations (right) obtained from the AMMI framework for shape

decomposition.

Fig. 4 Percentage and location of quasi-

landmarks in ear shape selected (white zones

in ear images) as a function of the F-ratio

threshold. The best identification

performances are obtained with the

configuration encircled.

© 2014 Anatomical Society

Matching symmetry in the human pinnae, P. Claes et al. 65



individuals were also seen in the conchae, antitragus, anti-

helix and remaining parts of the helix. However, the lobule,

tragus, and tubercle part of the helix are ear substructures

that tend to ‘stick out’ and they clearly demonstrated the

highest degree of asymmetry besides matching symmetry in

ear shape. This is similarly seen for protruding facial fea-

tures such as the nose (Claes et al. 2012b). It was therefore

concluded that the conchae, antitragus, and antihelix, in

contrast to the lobule, tragus, and tubercle part of the helix,

might be favorable regions for the purpose of identifica-

tion, as was subsequently demonstrated in this work. Coin-

cidence or not, these three substructures developmentally

all originate from the second arch of auricle hillocks (green

arrows in Fig. 1). In the remainder of this section we focus

on the discussion of these results in the context mainly of

biometrics and sound localization.

The uniqueness in shape of the human pinna as led to its

use as a biometric identifier (Iannarelli, 1989; Jain et al.

2004; Yan & Adviser-Bowyer, 2006) and this is often com-

pared to face recognition (Victor et al. 2002; Chang et al.

2003). Anatomically, ear recognition has two main advanta-

ges. Firstly, ear shape is quite stable throughout the lifespan

(Iannarelli, 1989). Second, ear shape does not change like

facial shape due to facial expressions (Smeets et al. 2010). A

recent survey on ear biometrics (Abaza et al. 2013) lists 2D

as well as some 3D ear image databases. In contrast to this

work, 3D information in these databases was captured

using surface range scanners. Due to the amount of radia-

tion involved, using a CT scanner to collect research data is

unethical. Although CT scanners are too dangerous and

expensive to use in security systems, the greater quality in

3D shape needed for anatomical studies is not available in

contemporary laser range scanners. Therefore we used a

database of patients undergoing diagnostic CT scanning.

Furthermore, it is not unlikely that the resulting AMMI

models from the 340 scans, which are geometrically of high

quality, can be used in future model-based ear biometric

approaches, for which the authors can be contacted.

As outlined by Abaza et al. (2013), ear symmetry is men-

tioned as a feature to be exploited in the design of future

recognition systems. A few published papers on ear biomet-

rics (see Table 1) have incorporated an investigation of ear

symmetry using the ears on one side of the head as a

gallery and the other side as probes (Yan & Bowyer, 2005,

2007; Abaza & Ross, 2010). In contrast to this work, those

investigations were from a pure biometric perspective only.

Furthermore, their goal was not to find or focus on any par-

ticular substructures of interest, but just to see to what

extent ear symmetry, if present, can be used to identify peo-

ple. Their results should be compared with our results

obtained using complete ear shape. However, an in-depth

comparison is not straightforward. Firstly, as previously

mentioned, this study started from high quality 3D data

obtained from a medical CT scanner. Second, results are

influenced by the choice of similarity measure. In this work

the Procrustes distance was used, but alternative measures

of similarity exist and are an active topic of investigation in

biometrics in general (Jain et al. 2007). Finally, our main

purpose was to investigate matching symmetry from an

anatomical perspective using spatially dense geometric mor-

phometrics. In addition, the aim was to illustrate the bene-

fit of incorporating this knowledge appropriately. We

distinguished areas that are relatively less or more selective

in establishing identity based on matching symmetry. This

has been put to the test in a biometric verification and

identification setup. By focusing on substructures with

higher F-ratios (selected using thresholding) an increase in

biometric performance was observed, until the selection

became too small for further improvement.

The ears have been endowed with their complex mor-

phology to suit the task of echolocation. But if the ear mor-

phology has been optimized for this task, it seems

contradictory that there is such a large variability in ear

morphology across the human population. On the other

hand, psychoacoustic localization experiments do show that

there is a large variability in the human ability to localize

sounds in front/back and up/down dimensions (Wightman

& Kistler, 1989b; Wenzel et al. 1993; Zahorik et al. 2006).

Some listeners outperform others by a factor of 20 in a

front/back localization task (Wenzel et al. 1993), and the

mean localization error in the up/down dimension can

range between 5° and 40°, depending on the listener

(Wenzel et al. 1993). A possible explanation may lie in the

differences in ear morphology: some listeners’ outer ears

may provide more prominent cues, allowing better spatial

localization. This hypothesis was tested in two different

Table 1 Short overview of related methods in ear biometrics testing matching symmetry in ear shape and their performances on verification and

identification testing.

Reference Method Rank 1 identification in % Equal error rate (EER) in %

Yan & Bowyer (2005, 2007) 3D ICP 90 Na

Abaza & Ross (2010) 12 Iannarellis measurements Na 16.75

Abaza & Ross (2010) Shape from shading

(Cadavid & Abdel-Mottaleb, 2008)

49 17.06

Abaza & Ross (2010) Eigen Ear (Chang et al. 2003) 35.31 21.05
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studies (And�eol et al. 2013; Majdak et al. 2014) and their

results suggest that it is not so much the exact morphology

of the ear (an acoustic factor) that determines sound locali-

zation performance, but the individual’s ability to detect

spectral cues (a perceptual factor) (Drennan & Watson,

2001; Eddins & Bero, 2007).

In addition to variation in ear shape variation among

individuals, the left and right ears are not exact mirror cop-

ies. This departure from matching symmetry does not auto-

matically have an negative effect on sound localization. On

the contrary, pinna asymmetry may even improve sound

localization, as seen in some birds (Norberg, 1977; Takah-

ashi, 2010). Bilateral asymmetry has evolved independently

at least five times among owls and is achieved by a variety

of morphological adaptations, from the skull to the soft tis-

sues of the outer ears (Volman, 1994). This asymmetry helps

the owl to localize prey in the vertical direction, comple-

menting inter-aural time difference as a cue to estimate the

horizontal position. To what extent such a bilateral asym-

metry may be beneficial for human sound localization

remains, as far as we know, uninvestigated. But the fact

that it is not a systematic feature in humans, together with

the finding that the exact ear shape does not appear to be

that important (And�eol et al. 2013; Majdak et al. 2014),

suggests that matching symmetry does not play a signifi-

cant role in human sound localization.

Given the evidence of a limited role for human ear shape

left/right asymmetries in sound localization, leaves the ques-

tion of why our ears show such levels of matching symme-

try. One could speculate that the primary driver behind

bilateral ear symmetry in humans is sexual selection, as per-

sons who have lower FA (less asymmetry) are associated

with better environments and ‘genetics’ (Hume & Mont-

gomerie, 2001). The lower levels of FA likely result from

lower levels of developmental instability as compared with

persons with higher levels of ear FA. However, it is easy to

assume that left and right deviations from symmetry are in

fact expressed more in the face, and probably hands and

feet. This because the ear is mainly cartilaginous tissue,

whereas face/hand/feet are under strong structural and

functional influence of underlying muscular tissue and its

neural control, which tend to have left and right biases.

Interesting follow-up studies should include the relation-

ship of FA across different parts of the human body. Never-

theless, there are a number of congenital dysmorphologies,

such as Treacher Collins, that involve the external ear. The

patterns of malformation of the ear involve the positioning

(vertical, horizontal, and rotation), size across several

dimensions, and shape, and are commonly used as diagnos-

tic criteria (Jones et al. 2013). The anatomical findings and

spatially dense methods that we present here provide the

basis for further investigations into both normal range and

clinically manifest ear shape variation. Although, as men-

tioned above, CT-based datasets, like the one we used, are

not expected to become readily available, high-resolution

scans like these can provide a means by which to scale and

validate lower resolution scanning like laser scanning and

photogrammetry. This would make possible studies of

many more individuals from more populations, as well as

relationship modeling of genotypes from phenotypes using

methods like recently described bootstrap response-based

imputation modeling (BRIM) (Claes et al. 2014).

In recent years, efforts have been made to include audio

in the virtual reality experience (Carlile, 1996). Virtual audi-

tory space (VAS) technology introduces HRTFs to the signals

presented over headphones and this way a listener can be

placed in any kind of auditory environment. However, the

individual differences in ear morphology and their respec-

tive HRTFs are too large to use generic, non-individualized

filters: a slightly different HRTF would severely hamper cor-

rect sound localization and would result in front/back up/

down errors (Wenzel et al. 1993; Carlile, 1996). Although

measuring the individual HRTF of each user would yield the

best results, this is not feasible for large-scale projects and

commercial endeavors, given the specialized facilities and

time required. For this reason, researchers have been work-

ing to find other ways to model an individual’s HRTF (for

an overview, see Xu et al. (2007). A promising alternative to

obtain an individual’s HRTF is via acoustic simulation based

on the individual’s ear morphology. If one knows the ear

shape, for example modeled using the framework pre-

sented here, it is possible to simulate how it would interact

with sound coming from different directions and to calcu-

late the corresponding HRTF (Otani & Ise, 2006). This way

the crux of the problem is shifted to the assessment of the

complex ear morphology at the individual level. The basis

of modeling shape variations derived in this study may facil-

itate this essential step, and may allow one to estimate an

individual’s HRTF using ear shape information.

Conclusion

Matching symmetry is observed in the human pinnae. How-

ever, during development in vertebrates, imbalances in

growth will inevitably result in deviations from perfect sym-

metry, known as asymmetry. We present here a 3D investi-

gation of both asymmetry and matching symmetry in the

human pinnae. Matching symmetry was observed in all ana-

tomical substructures of the pinna. However, substructures

that ‘stick out’, such as the helix, tragus, and lobule, also

show a fair degree of asymmetry. In contrast, substructures

such as the conchae, antitragus, and antihelix show more

matching symmetry than asymmetry. The results and the

methods employed have important implications on future

investigations and applications in ear recognition and

sound localization. Since we show that in the vast majority

of cases, the left ear of an individual can be compared as a

probe in a gallery of right ears, biometric comparisons can

be generalized in cases where only one ear is visible. In

this context we also demonstrated improved biometric
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verification and identification using the anatomical insights

gained. The present investigation brings future recognition

systems one step closer to operating in unconstrained envi-

ronments such as train stations and airports. Other implica-

tions involve the resulting models coding for patterns of

variation in ear shape obtained from 340 CT scans, which

are geometrically of high quality. These can be used not

only to help improve other 3D ear models but also to allow

shape variation to be simulated and tested explicitly for a

variety of experiments, for example in sound localization,

and genetic and environmental effects on ear variation.

Furthermore, given the spatially dense nature of these

methods, explicitly modeling individual ear shape provides

a promising alternative to measuring an individual’s HRTF.
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Appendix 1

Shape analysis based on 3D surface
registration

Landmarks or homologous points or points of correspon-

dence on shapes that match between and within popula-

tions form the mathematical basis of a geometric

morphometric-based shape analysis (Dryden & Mardia,

1998). ‘True’ landmarks have developmental, functional,

structural or evolutionary significance (Richtsmeier et al.

2002) and often have been indicated manually on 2D as well

as 3D images and shapes. These landmarks have a particular

name and are uniquely defined. However, owing to the lack

of anatomically discrete features in regions of the ear, man-

ually indicated landmarks provide only a sparse representa-

tion and salient features of ear shape can be overlooked.
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The demand to detect, quantify and visualize both subtle

and severe asymmetries in discrete regions of the ear

requires more complete spatially dense shape representa-

tions. As discussed in Claes et al. (2011), the biggest

challenge when working with spatially dense shape repre-

sentations is to obtain compatible landmark configurations

beyond ‘true’ landmarks. Following the original and broad

definition of semi-landmarks, that is, points that do not

have names but that correspond across all cases of similar

but variable shapes (Bookstein, 1997; Andersen et al. 2000),

quasi- and semi-landmarks are essentially the same. The

challenge for both types of landmarks is to find a mapping

function that establishes one-to-one correspondences and

therefore generates compatible configurations from one 3D

ear shape to the other.

Finding a mapping function between two or more 3D

shapes, without pre-assigned correspondences, is commonly

known as ‘3D registration’ in computer vision. The goal of a

registration algorithm is to find the geometrical relation-

ship (one-to-one correspondences) between 3D shapes fol-

lowing a predefined transformation model (Claes, 2007). A

popular registration algorithm, without pre-assigned corre-

spondences, is the iterative closest point (ICP) procedure

(Besl & McKay, 1992). ICP is an iterative two-step algorithm

in which candidate correspondences and transformation

model parameters are updated until no more change in

either is observed. The mapping strategy used here is a

non-rigid (in contrast to rigid) extension of the original ICP

algorithm. Iteratively, more flexibility in the elasticity (bend-

ing energy) of the transformation model is allowed such

that initially larger, but gradually more local and subtler,

shape differences are accommodated when searching for

correspondences.

It is important to note that the development of 3D sur-

face registration algorithms has been an active field of

research in computer vision over the past two decades and

that a different algorithm can lead to different mapping

results. Recently, we implemented the most successful algo-

rithms found in the literature while making additional

improvements (e.g. speeding up computational time) and

comparing them. Technical details and the comparative

study of the non-rigid mapping used on human faces,

skulls, and bodies can be found in Snyders et al. (2014) and

Giachetti et al. (2014). From these results, the best perform-

ing algorithm using a combination of weighted K-nearest

neighbors and a newly proposed visco-elastic deformation

model was chosen to perform the required shape mappings

in this work.

Appendix 2

Shape subspace comparison

The generalized Procrustes superimposition results in a tan-

gent space of the Kendall shape space centered on the

overall consensus configuration (Dryden & Mardia, 1998).

All ear shapes represented as quasi-landmark configurations

were superimposed on this tangent space. In previous work

(Claes et al. 2012b) we provided a non-parametric D

(istance)-statistic-based permutation framework based on

the work of Anderson (2001, 2006, McArdle & Anderson,

2001), to test differences in group location, variance-covari-

ance scale, and orientation. In summary: (i) The location test

Table A1 Results of left vs. right ear and inter vs. intra ear shape

variations in group location, scale and orientation. pperm is P-value

under permutation with 10 000 permutations. Dstat is the distance

statistic used for the respective tests.

Left–right Inter–intra

Dstat pperm Dstat pperm

Location 0.47 0.0003 0.47 0.0719

Scale 0.24 0.0007 0.48 0.0000

Orientation 0.05 0.1913 0.07 0.0030

0.08 0.0757 0.10 0.0029

0.10 0.0880 0.14 0.0000

0.12 0.1222 0.17 0.0000

0.14 0.2414 0.21 0.0000

0.17 0.1090 0.25 0.0000

0.20 0.0885 0.30 0.0000

0.23 0.0752 0.34 0.0000

0.26 0.1432 0.38 0.0000

0.29 0.1813 0.42 0.0000

0.32 0.1470 0.46 0.0000

0.36 0.1095 0.51 0.0000

0.39 0.1061 0.55 0.0000

0.43 0.0702 0.59 0.0000

0.47 0.0722 0.64 0.0000

0.51 0.1219 0.69 0.0000

0.56 0.0837 0.75 0.0000

0.61 0.1242 0.80 0.0000

0.65 0.2482 0.86 0.0000

0.71 0.1287 0.92 0.0000

0.77 0.1414 0.98 0.0000

0.82 0.1921 1.04 0.0000

0.88 0.2968 1.11 0.0000

0.94 0.4440 1.18 0.0000

1.01 0.5577 1.26 0.0000

1.10 0.4090 1.33 0.0000

1.19 0.3814 1.41 0.0000

1.28 0.3449 1.51 0.0000

1.40 0.2399 1.60 0.0000

1.52 0.3395 1.69 0.0000

1.66 0.4883 1.80 0.0000

1.88 0.1807 1.92 0.0000

2.10 0.1682 2.06 0.0000

2.30 0.2830 2.19 0.0000

2.34 0.0000

2.51 0.0000

2.68 0.0000

2.84 0.0000

3.01 0.0000

3.17 0.0000
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assessed the difference in central tendency, which generally

measures group divergence. The D-statistic employed was

simply the Euclidean distance between sample means. (ii)

The variance–covariance scale test assessed the difference in

overall dispersion, which measures differences in the magni-

tude of variance or the stability of a group around its

consensus configuration. The D-statistic used was the abso-

lute difference in average residual of both groups. (iii) The

2variance–covariance orientation test assessed the differ-

ence in covariance structure, which measures differences in

patterns or directions of variance. The D-statistic was con-

structed using the projection metric (Hamm & Lee, 2008)

based on critical angles (Krzanowski, 1979), also known as

principal angles (Knyazev & Argentati, 2002), between sub-

spaces. These angles combine principal components (PCs) in

a pairwise fashion from both subspaces in decreasing simi-

larity or increasing angle value. The number of significant

PCs to be used was determined using parallel analysis (PA)

(Kranklin et al. 1995), which statistically defines spurious

PCs compared with PCs of equally dimensioned but random

and uncorrelated data. Note that alternative F-statistics to

the respective D-statistics used here were provided as well

(Claes et al. 2012b). However, they generated similar results

and were computationally much more expensive and hence

the results are not shown. Also note that similarities with

parts of these tests and well-known tests in shape analysis

exist (Claes et al. 2012b), such as the two independent sam-

ple Goodall’s F-test (Goodall, 1991; Bookstein, 1997) and

Fig. A1 Subspace differences on the aspect

of population orientation with observed D-

statistic (blue line) against the null distribution

(red lines) obtained using permutation in

function of the number of principal angles.

Above, a non-significant difference between

left and right ear subspaces (observed statistic

is masked by the null distribution). Below, a

significant difference between inter- and

intra-subject ear variations (observed statistic

is not masked by the null distribution).

Table A2 Parallel analysis (PA) results for left, right, inter- and intra-

ear shape subspaces with percentage of the total variance explained

by the number of significant principal components for the variance–

covariance orientation test-setup.

Parallel analysis #PC % explained

LEFT 32 89.58

RIGHT 33 89.46

INTER 30 90.09

INTRA 39 86.79
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the permutation-based version of the formal test for bilat-

eral symmetry given by Mardia et al. (2000).

Firstly, the subspaces of the left and right ears as separate

groups were compared. Second, we compared the subspac-

es of intra- vs. inter-subject variations. The results on com-

paring shape subspaces are given in Table A1 and Fig. A1.

When considering left and right as separate groups, the dif-

ference in both group location and scale was significant.

However, both differences show small effect-sizes: Cohen’s

distances of 0.08 and 0.18, respectively. Following Cohen’s

rule of thumb, these are lower than ‘small’ (0.2) and there-

fore the differences were considered trivial. This also implies

that the effect of side or DA in overall ear shape can be con-

sidered trivial (Table A1). In combination with the non-sig-

nificant difference in orientation, left and right subspaces

covered the same loci in shape-space. When considering

intra- and inter-subject shape variations (acquired from the

AMMI framework) as separate groups, a non-significant

effect was measured for group location. This is as it should

be, simply because the intra-subject subspace was artificially

centered on the overall average ear shape for visualization

purposes only. A significant effect on group scale was

observed with a Cohen’s distance of 0.35, which is between

a ‘small’ (0.2) and ‘medium’ (0.5) effect-size. This implies

that the dispersion of inter-subject variations (5.23) was

greater than the dispersion of intra-subject variations (4.75).

In other words, differences between individuals are larger

in magnitude than left–right differences, as was also seen

in Fig. 3. Additionally and finally, besides group scale, a sig-

nificant difference in orientation was observed as well,

which implies that the patterns of inter- and intra-subject

variations cover different directions in shape-space. This

was observed primarily in the more pronounced changes

occurring in the conchae, antitragus, and antihelix across

individuals than with left–right patterns in Fig. 3.

The number of PCs used for testing group orientation dif-

ferences was the maximum number of significant PCs for

the respective subspaces compared pairwise (left/right and

inter/intra) listed in Table A2 plus one. This to ensure that

enough relevant variation was captured in the subspace

representations without incorporating too much irrelevant

variation. Two further observations are made from

Table A2. Firstly, the number of PCs for left and right ear

spaces separately were nearly equal, explaining a similar

amount of total variance. Second, the number of significant

PCs for intra-subject variations was larger than those of

inter-subject variations, explaining the smaller amount of

total variation. The larger the number of PCs required to

explain a certain percentage of variance, the smaller the

amount of redundancy or structure present within the data.

Hence inter-subject variations were structurally more orga-

nized than intra-subject variations, which appear to be

behaving more like noise. This is in line with the perception

of fluctuating asymmetry resulting in the inability of a char-

acteristic to develop in a pre-determined way (Van Valen,

1962).
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